Recent Advances in Identifying the Causes of Cancer

Kate Z. Guyton, PhD DABT

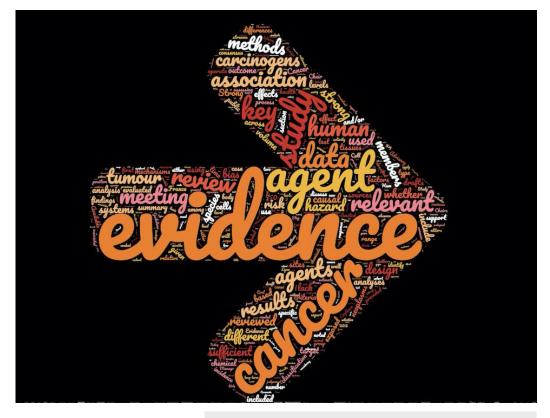
Senior Program Officer Board on Environmental Studies and Toxicology US National Academies of Sciences, Engineering & Medicine Kguyton@nas.edu

Conflict of Interest Statement

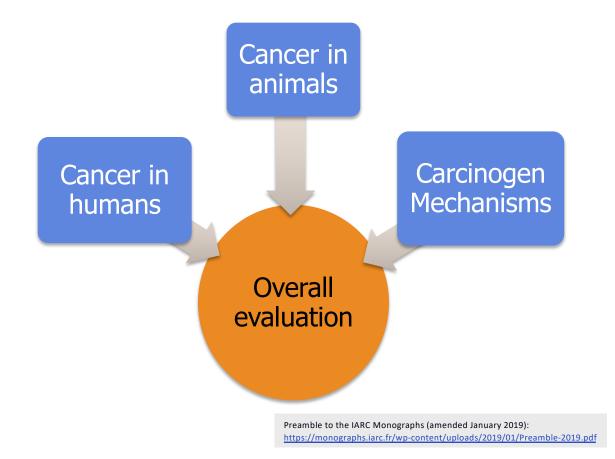
I declare no financial interests related to the subject matter of my presentation.

Presentation Overview

- Cancer: today and tomorrow
- Progress and promise in identifying cancer causes
- The key characteristics (KCs) of carcinogens: new insights into causes of cancer


Cancer: the Global Burden

- Rising burden & changing demographics
- Prevention is the single most effective response to these challenges
- The first step in cancer prevention is to identify the causes of human cancer
- Authoritative reviews provide the scientific basis for action
 - Regulation to reduce exposures
 - Actions by individuals



How Are Carcinogens Identified?

Preamble to the IARC Monographs (amended January 2019): https://monographs.iarc.fr/wp-content/uploads/2019/01/Preamble-2019.pdf

How Are Carcinogens Identified?

How Are Overall Evaluations Reached?

Evidence of Cancer in Humans	Evidence of Cancer in Experimental Animals	Mechanistic Evidence	Evaluation	
Sufficient			Carcinogenic	
	Sufficient	Strong (exposed humans)	(Group 1)	
Limited	Sufficient			
Limited		Strong	Probably	
	Sufficient	Strong (human cells or tissues)	carcinogenic (Group 2A)	
		Strong (mechanistic class)		
Limited			Descibly	
	Sufficient		Possibly carcinogenic (Group 2B)	
		Strong		
	Sufficient	Strong (does not operate in humans)	Not classifiable	
	(Group 3)			

Preamble to the IARC Monographs (amended January 2019): https://monographs.iarc.fr/wp-content/uploads/2019/01/Preamble-2019.pdf

What Causes Cancer?

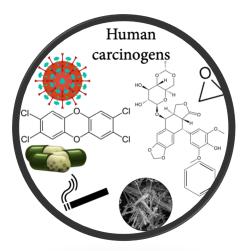
Agents Classified by the IARC Monographs, Volumes 1–130

Group 1	Carcinogenic to humans	121 agents
Group 2A	Probably carcinogenic to humans	90 agents
Group 2B	Possibly carcinogenic to humans	322 agents
Group 3	Not classifiable as to its carcinogenicity to humans	498 agents

https://monographs.iarc.who.int/agents-classified-by-the-iarc/

What Causes Cancer?

Agents Classified by the IARC Monographs, Volumes 1–130

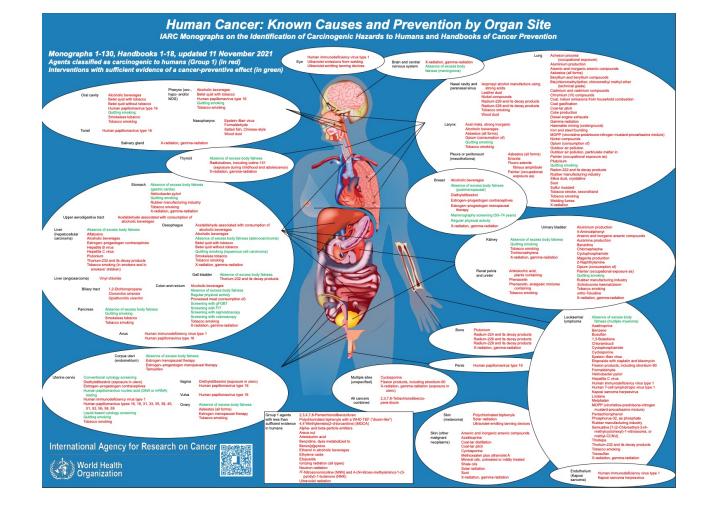

Group 1	Carcinogenic to humans	121 agents
Group 2A	Probably carcinogenic to humans	90 agents
Group 2B	Possibly carcinogenic to humans	322 agents
Group 3	Not classifiable as to its carcinogenicity to humans	498 agents

https://monographs.iarc.who.int/agents-classified-by-the-iarc/

How Are Group 1 Agents Identified?

Evidence of Cancer in Humans	Evidence of Cancer in Experimental Animals	Mechanistic Evidence	Evaluation	
Sufficient			Carcinogenic	
	Sufficient	Strong (exposed humans)	(Group 1)	
Limited	Sufficient			
Limited		Strong	Probably carcinogenic	
	Sufficie Most	Group 1 agents	oup 2A)	
	were			
Limited	huma	human (observational)		
	Sufficie	sibly carcinogenic oup 2B)		
	Studi	Strong		
	Sufficient	Strong (does not operate in humans)	Not classifiable	
All other situations not listed above			(Group 3)	

What Causes Cancer?

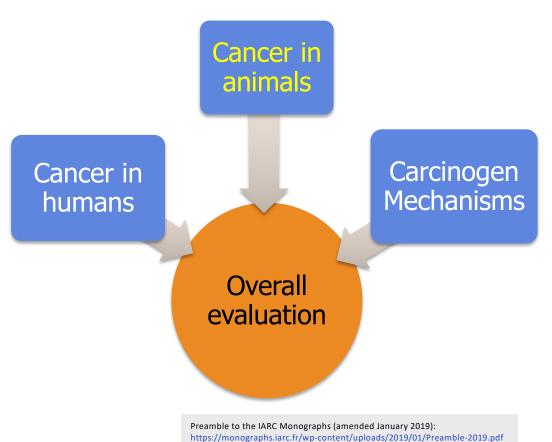


Group 1 carcinogens include:

- Chemicals
- Occupations
- Fibers
- Metals
- Pollutants/pollution
- Tobacco (smoking and secondhand)
- Radiation
- Drugs
- Viruses

https://monographs.iarc.who.int/agents-classified-by-the-iarc/

What Is Known across Cancer Types?



- Very few Group 1 breast carcinogens identified
 - Most occupational studies limited for women's cancers
 - Studies: dietary, medical, pharmaceutical setting

Lung Acheson process

(occupational exposure) Aluminium production Arsenic and inorganic arsenic compounds Asbestos (all forms) Beryllium and beryllium compounds Bis(chloromethyl)ether; chloromethyl methyl ether (technical grade) Cadmium and cadmium compounds Chromium (VI) compounds Coal, indoor emissions from household combustion Coal gasification Coal-tar pitch Coke production **Diesel engine exhausts** Gamma-radiation Haematite mining (underground) Iron and steel founding MOPP (vincristine-prednisone-nitrogen mustard-procarbazine mixture) Nickel compounds Opium (consumption of) Outdoor air pollution Outdoor air pollution, particulate matter in Painter (occupational exposure as) Plutonium Quitting smoking Radon-222 and its decay products Rubber manufacturing industry Silica dust, crystalline Soot Sulfur mustard Tobacco smoke, secondhand Tobacco smoking Welding fumes X-radiation

KZ Guyton & MK. Schubauer-Berigan, Environ. Health Perspect., 2021 https://ehp.niehs.nih.gov/doi/10.1289/EHP9507

What Is the Role of Animal Data?

Most Group 2B Agents Were Identified from Animal Bioassays

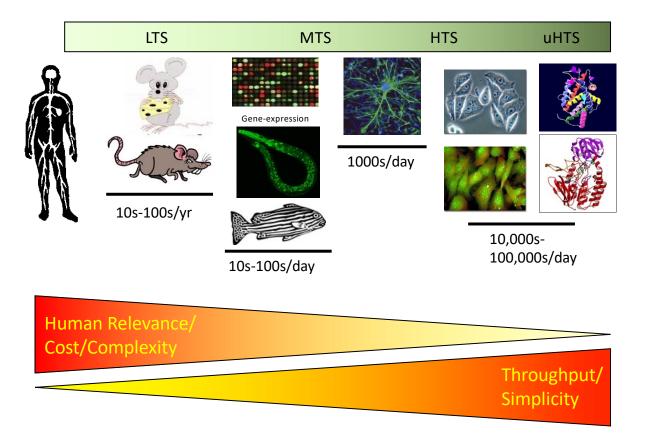
Agents Classified by the IARC Monographs, Volumes 1–130

Group 1	Carcinogenic to humans	121 agents
Group 2A	Probably carcinogenic to humans	90 agents
Group 2B	Possibly carcinogenic to humans	322 agents
Group 3	Not classifiable as to its carcinogenicity to humans	498 agents

https://monographs.iarc.who.int/agents-classified-by-the-iarc/

What Is the Role of Mechanistic Data?

Chemicals in Commerce and Their Evaluation

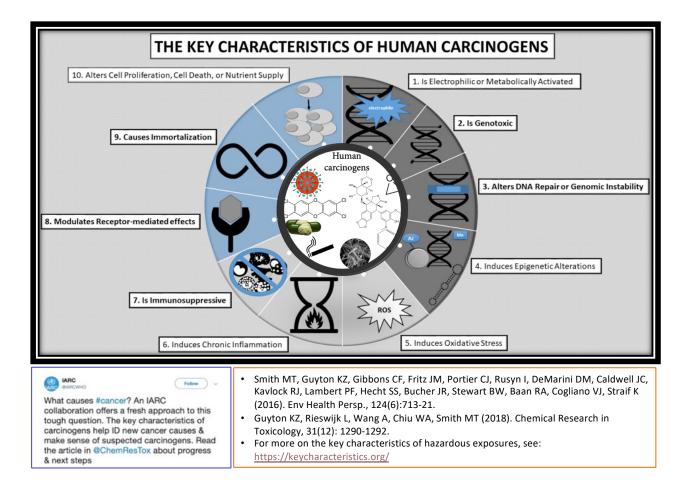

Chemicals in US commerce	
On Toxic Substances Control Act Chemical Substance Inventory	~75,000
Chemicals in US commerce between 25,000 – 1,000,000 lbs/yr	6500- 7000
Chemicals in US commerce >1,000,000 lbs/yr	>2200
Notable publicly available reviews	
Number of chemicals evaluated by IARC	>900
Number of chemicals listed on IRIS	545
Number of chemicals reviewed by Center for the Evaluation of Risks to Human Reproduction (CERHR)	23
Proposition 65 list of carcinogens and reproductive toxicants	~775

Guyton KZ, Kyle AD, Aubrecht J, Cogliano VJ, Eastmond DA, Jackson M, Keshava N, Sandy MS, Sonawane B, Zhang L, Waters MD and Smith MT. Mutat Res. 681(2-3):230-40, 2009.

Challenges in Identifying Carcinogens

- No assessment = no hazard?
- How to select and prioritize agents for assessment?
- Can mechanistic evidence help to fill gaps?

Diverse Sources of Mechanistic Data



What Are the Mechanisms of Human Carcinogens?

	Carcinogen				
Mechanisms	Aflatoxin B1	Arsenic	Asbestos	Benzene	DES
DNA damage	+	+	-	+	+
Gene mutation	+	-	+	-	-
Chrom mutation	+	+	+	+	+
Aneuploidy	-	+	+	+	+
Epigenetic	+	+		+	+
Receptor signaling	-	+	+		+
Other signaling	-	+		+	+
Immune effects	+	+	+	+	+
Inflammation	+	+	+	+	
Cytotoxicity	+	+	+	+	-
Mitogenic	-	+		-	+
Gap junction	+	+		+	+

Guyton KZ, Kyle AD, Aubrecht J, Cogliano VJ, Eastmond DA, Jackson M, Keshava N, Sandy MS, Sonawane B, Zhang L, Waters MD and Smith MT. Mutat Res. 681(2-3):230-40, 2009.

New Insights for Identifying Cancer Causes

Mechanistic Data Can Be Pivotal When Human Data Are Not Sufficient

Evidence of Cancer in Humans	Evidence of Cancer in Experimental Animals	Mechanistic Evidence	Evaluation	
Sufficient			Carcinogenic	
	Sufficient	Strong (exposed humans)	(Group 1)	
Limited	Sufficient			
Limited		Strong	Probably	
	Sufficient	Strong (human cells or tissues)	carcinogenic (Group 2A)	
		Strong (mechanistic class)		
Limited			Dossibly	
	Sufficient		Possibly carcinogenic	
		Strong	(Group 2B)	
	Sufficient	Strong (does not operate in humans)	Not classifiable	
L. L	(Group 3)			

Preamble to the IARC Monographs (amended January 2019): https://monographs.iarc.fr/wp-content/uploads/2019/01/Preamble-2019.pdf

Guidance from the US National Academies of Sciences

- The "[KCs] approach avoids a narrow focus on specific pathways and hypotheses and provides for a broad, holistic consideration of the mechanistic evidence."
 - "The committee notes that key characteristics for other hazards, such as cardiovascular and reproductive toxicity, could be developed as a guide for evaluating the relationship between perturbations observed in assays, their potential to pose a hazard, and their contribution to risk."

For more on the key characteristics of hazardous exposures, see: https://keycharacteristics.org/

Thank <u>you</u>!

